DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Selected recent publications

  • M. Gairing, T. Harks, and M. Klimm. Complexity and approximation of the continuous network design problem. SIAM J. Optim., To appear.
  • F. Abed, L. Chen, Y. Disser, M. Groß, N. Megow, J. Meißner, A. T. Richter, and R. Rischke. Scheduling maintenance jobs in networks. Proceedings of CIAC:19-30, 2017.
  • A. Antoniadis, R. Hoeksma, J. Meißner, J. Verschae, and A. Wiese. A QPTAS for the general scheduling problem with identical release dates. Proceedings of ICALP, 80: 1-14, 2017.
  • A. Bjelde, Y. Disser, J. Hackfeld, C. Hansknecht, M. Lipmann, J. Meißner, K. Schewior, M. Schlöter, and L. Stougie. Tight bounds for online TSP on the line. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA:994–1005, 2017.
  • N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning tree under uncertainty. SIAM Journal on Computing, 9294(1):878–890, 2017.
  • K. Schmidt and R. Hiptmair. Asymptotic expansion techniques for singularly perturbed boundary integral equations. Numer. Math.:DOI 10.1007/s00211-017-0881-y, 2017.
  • M. Skutella. A 2.542-approximation for precedence constrained single machine scheduling with release dates and total weighted completion time objective. Operations Research Letters, 44:676–679, 2016.
  • A. Semin and K. Schmidt. Absorbing boundary conditions for the viscous acoustic wave equation. Math. Meth. Appl. Sci., 39(17):5043–5065, 2016.
  • R. Borndörfer, H. Hoppmann, and M. Karbstein. Passenger routing for periodic timetable optimization. Public Transport, 9(1-2):1–21, 2016.
  • Y. Disser, J. Hackfeld, and M. Klimm. Undirected graph exploration with Θ(log log n) pebbles. Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA):25–39, 2016.
  • B. Delourme, K. Schmidt, and A. Semin. On the homogenization of thin perforated walls of finite length. Asymptot. Anal., 97(3-4):211–264, 2016.
  • J. Matuschke, M. Skutella, and J. Soto. Robust randomized matchings. Proc. of the 26th Annual ACM- SIAM Symposium on Discrete Algorithms (SODA 2015):1904–1915, 2015.
  • K. Schmidt and R. Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete Contin. Dyn. Syst. Ser. S, 8(3):619–647, 2015.
  • R. Borndörfer and M. Karbstein. Metric inequalities for routings on direct connections with application to line planning. Discrete Optimization, 18(C):6–73, 2015.
  • F. Fischer and M. Klimm. Optimal impartial selection. SIAM J. Comput., 44(5):1263–1285, 2015.
  • M. Skutella, M. Sviridenko, and M. Uetz. Unrelated machine scheduling with stochastic processing times. Mathematics of Operations Research, 41(3):851-864 , 2014.
  • K. Schmidt, A. Thöns-Zueva, and P. Joly. Asymptotic analysis for acoustics in viscous gases close to rigid walls. Math. Models Meth. Appl. Sci., 24(9):1823–1855, 2014.
  • R. Borndörfer, H. Hoppmann, and M. Karbstein. 13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems. A configuration model for the line planning problem. In D. Frigioni and S. Stiller. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: 68-79, 2013.
  • R. Borndörfer, M. Karbstein, and M. E. Pfetsch. The Steiner connectivity problem. Mathematical Programming, 142(1):133–167, 2013.
  • M. Hoefer, T. Harks, M. Klimm, and A. Skopalik. Computing pure Nash and strong equilibria in bottle-neck congestion games. Math. Programming, 141(1-2):193–215, 2013.
  • R. Borndörfer, M. Karbstein, and M. E. Pfetsch. Models for fare planning in public transport. Discrete Applied Mathematics, 160(18):2591–2605, 2012.
  • T. Harks and M. Klimm. On the existence of pure Nash equilibria in weighted congestion games. Math. Oper. Res., 37(3):419–436, 2012.