DE | EN
Home
About Us
Overview
Facts and Figures
Organization
Scientists
Contact
Approach
Situations offered
Research
Overview
Application Fields
Projects
Publications
Scientists
Preprints
Institutional Cooperation
Archiv 02-14
Transfer
Overview
Industry
References
MODAL-AG
Spin Offs
Software
Patents
Schools
Overview
MathInside
MATHEATHLON
Matheon-Kalender
What'sMath
Training for Teachers
Summer Schools
Events
Press
Overview
Releases
News
Overview
Matheon Head
Number of the week
News 2002 - 2014
Activities
Overview
Workshops
15 Years Matheon
Media
Overview
Photos
Videos
Audios
Booklets
Books
News from around the world

Since 2019, Matheon's application-oriented mathematical research activities are being continued in the framework of the Cluster of Excellence MATH+
www.mathplus.de
The Matheon websites will not be updated anymore.

Stefanie Kasielke

kasielke@zib.de


Projects as a member

  • CH5

    Model classification under uncertainties for cellular signaling networks

    Prof. Dr. Alexander Bockmayr / Prof. Dr. Susanna Röblitz / Prof. Dr. Heike Siebert

    Project heads: Prof. Dr. Alexander Bockmayr / Prof. Dr. Susanna Röblitz / Prof. Dr. Heike Siebert
    Project members: Stefanie Kasielke / Adam Streck
    Duration: -
    Status: completed
    Located at: Freie Universität Berlin / Konrad-Zuse-Zentrum für Informationstechnik Berlin

    Description

    Mathematical modelling in biological and medical applications is almost always faced with the problem of incomplete and noisy data. Rather than adding unsupported assumptions to obtain a unique model, a different approach generates a pool of models in agreement with all available observations. Analysis and classification of such models allow linking the constraints imposed by the data to essential model characteristics and showcase different implementations of key mechanisms. Within the project, we aim at combining the advantages of logical and continuous modeling to arrive at a comprehensive system analysis under data uncertainty. Model classification will integrate qualitative aspects such as characteristics of the network topology with more quantitative information extracted from clustering of joint parameter distributions derived from Bayesian approaches. The theory development is accompanied by and tested in application to oncogenic signaling networks.

    http://www.mi.fu-berlin.de/en/math/groups/dibimath/projects/A-CH5/index.html

Projects as a guest