Project heads:
Prof. Dr. Ralf Borndörfer
/
Prof. Dr. Martin Skutella
Project members:
Sebastian Schenker
Duration: 01.06.2017 - 31.12.2017
Status:
completed
Located at:
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Description
Multi-objective optimization is oncerned with optimizing several conflicting objectives at once.It can be considered as a generalization of single-objective optimization with numerous applications that range from health care, sustainable manufacturing, economics and social sciences to traffic and logistics. Roughly speaking, basically any real-world application that can be modeled as an optimization problem might be considered as a multi-criteria optimization problem if enough data is available. In contrast to the single-objective case, it is generally impossible to compute a single solution that optimizes all objectives simultaneously. Instead, we have to deal with trade-offs and distinguish between non-dominated points that cannot be improved upon (on at least one objective without getting worse at another) and dominated points that can be improved upon.
In this project we pursue a new concept to partition the set of non-dominated points. This approach enables us to solve general integer programs by combining the research goals of achieving theoretical efficiency, of implementing practical algorithmic approaches and of being able to approximate the entire set of non-dominated points via a subset of non-dominated points with some kind of approximation guarantee.
Furthermore, we aim at making all project results available to the optimization community via implementations to PolySCIP, our solver for multi-objective linear and integer programs.
https://www.zib.de/projects/solving-multi-objective-integer-programs